

Neutron Scattering Studies of Hybrid Perovskites for Photovoltaic Applications

M.K. Crawford

DuPont CR&D

40 Years of Neutron Scattering Symposium

NIST Center for Neutron Research

February 18, 2016

Acknowledgements

- R.J. Smalley, N. Herron, L. Johnson, I. Milas, W.E.
 Guise DuPont CR&D
- P. Whitfield, N. Jalarvo, Y.Q. Cheng, A. Ramirez-Cuesta, L. Daemen, G. Ehlers, K. Page, X. Wang Oak Ridge National Laboratory
- M. Tyagi *NIST Center for Neutron Research and University of Maryland*

Thanks!

- For your help to members of the PAC Committee
 - And BTAC as well
- Bill Kamitakahara
 - For your long dedication to improving the user program, proposal system and the reviewers, and your service to the user group and its executive committee
- You have both contributed greatly to the science and culture of the NCNR
 - And I hope you continue to do so in retirement

My One DCS Experiment: Spin Waves in GeNi₂O₄

Lashley et al, Phys. Rev. B 78, 104406 (2008)

- GeNi₂O₄
 - Antiferromagnetic cubic spinel
 - Two Neel transitions: 12.1 K and 11.4 K
- DCS $S(Q,\omega)$ beautifully shows
 - 0.3 meV spin wave gap
 - Nicely dispersing spin waves

The Rise of Hybrid Perovskites for Photovoltaics

Exceptional Properties

- Ambipolar conductivity: p- or n-type semiconductor
- Carrier diffusion lengths : > 1 μ m
- High defect tolerance
- Ideal bandgap of 1.55 eV for MAPbl₃ (tunable)
- High Voc (>1 V)
- Low Voc Deficit (69% of bandgap)

Perovskites

ABX_3

- Hundreds of perovskites: Properties vary and include insulating, antiferromagnetic, piezoelectric, thermoelectric, semiconducting, conducting, and superconducting materials
- (MeNH₃)PbI₃ (MAPbI₃): "Standard" composition for perovskite-based PV, including record devices, with bandgap of 1.6 eV

Structure

• 3D network of corner sharing PbI₆³⁻ octahedra with charge-compensating cations in the gaps

Bandgap of MAPbl₃ is readily tuned by chemical substitution:

- Halide substitution, e.g. MAPb(Br_xI_{1-x})₃: 1.6 to 2.2 eV
- Metal substitution, e.g., MASnl₃: 1.3 eV
 - Sn oxidation to Sn(IV) leads to degradation
- Cation substitution: Cs, 1.7 eV; FA, 1.5 eV
 - CsPbl₃ readily decomposes
 - Cation must be small enough to fit within the gap (tolerance factor)

F

MAPbl₃ Brillouin Zone and Band Structure

- Cubic perovskite Pm-3m
- Direct bandgap semiconductor
 - High optical absorption coefficient
 - Thin films harvest light effectively
- High symmetry Brillouin zone boundary points
 - R, M, X
 - Optical bandgap is located at the R point
 - R point becomes the Γ point in the tetragonal phase
- T. Umebayashi et al, PRB 67, 155405 (2003)

Hybrid perovskite crystal structures are complex

- Presence of organic cations generates large amounts of disorder at high temperatures where PV devices operate
- Structural phase transitions involving rotations of PbI₆ octahedra, coupled to organic cation reorientations through hydrogen bonds, have significant impact on physical properties such as
 - Charge carrier mobility
 - Ionic conductivity
 - Exciton binding energies
 - Optical absorption
 - Thermal conductivity
 - Heat capacity

Structures: Neutron and X-Ray Diffraction

- Neutron diffraction data collected at POWGEN/SNS
- Fully and partially deuterated samples
 - Reduce incoherent scattering
 - Measure isotope effects on phase transitions
 - C, N and H/D atom positions

- X-ray diffraction data collected at Advanced Photon Source
 - DND-CAT
 - 0.4 Å wavelength (31 keV)
 - High resolution

Element	Neutron Coherent Cross- section (barn)	X-Ray Cross- section (barn)
Н	1.76	0.6
D	5.59	0.6
С	5.56	5
N	11.0	6.5
Pb	11.12	9392
1	3.5	1622

Orthorhombic structure: T = 10 K

95% ellipsoids

- Pnma structure refinement
 - T = 10 K to minimize diffuse background contribution
 - Scattering to high Q some diffuse background even at 10K
 - Full un-constrained refinement carried out.
 - Same structure as MAPbBr₃ at 10 K
 (Swainson et al.)
- Three strong hydrogen bonds between D and the I(2) sites of 1 x 2.625 Å/179.5° and 2 x 2.696 Å/150.6°
- Deuterium ADPs as expected for such a structure
- Pb and I ADPs small with little directional motion by the iodines

Tetragonal structure: T = 190K

I4/mcm symmetry

- Same as Weller structure: Chem Commun (2015)
- C and N ¼ occupancy, D ¹/₈ occupancy; 8 positions
- D-I distances on order of 3.0 Å: weaker H-bonds

95% ellipsoids

Cubic structure: T = 350K

- Pm-3m symmetry
- Despite extreme disorder
 - Only 5 atomic positions so no constraints needed
 - Very significant diffuse background which was partially modelled using a sin(q)/q curve to reduce number of background parameters
 - Structure agrees with literature structure
- MA is completely disordered as a nearly free rotor.
- Iodine ADPs similar size to the deuterium atoms
- Closest centroid D-I distance 3.09 Å
 - Weak hydrogen bonds

MAPbl₃ Structures

- Only showing the Pbl₆ octahedra
- Cubic-tetragonal transition involves rotations of octahedra around a single cubic axis
 - Order parameter is rotation angle
- Tetragonal-orthorhombic transition involves tilts around additional cubic axes

Structural phase transitions in MAPbI₃

Space Group	Glazer Notation for Octahedra Tilts and Rotations
Pm3m	a ⁰ a ⁰ a ⁰
I4/mcm	a ⁰ a ⁰ c ⁻
Pnma	a+b-b-

Howard and Stokes, Acta Cryst B54, 782 (1998)

Hybrid Perovskite Phase Transitions

- Cubic-tetragonal phase transition of MAPbl₃
 - Similar to cubic-tetragonal transition in SrTiO₃ at 110 K
 - Driven by condensation of single triply degenerate R-point phonon (out-of-phase rotation around cubic c axis)
 - Superlattice Bragg peaks appear with cubic indices ½ (hkl) with h, k, I odd
 - I4/mcm
- Low temperature transition involves cubic M and X-point phonons
 - Rotations around different cubic axes
 - But coupled to order-disorder transition of MA cations through hydrogen bonds

X-Ray Bragg Reflections and PbI₆ Rotations: d6-MAPbI₃

- Cubic-tetragonal phase transition at T = 330 K
 - First-order (phase coexistence)
- (200) cubic Bragg reflection
 - Splits into (220) and (004) tetragonal Bragg peaks
 - Tetragonal strain is a secondary order parameter

- R-point ½ (311) Bragg reflection
 - Pseudo-cubic unit cell
 - Same as (211) in tetragonal cell
 - Shows the presence of out-ofphase PbI₆ rotations
 - I4/mcm space group

MAPbl₃ Lattice Parameters: Neutron and X-Ray Diffraction

X-Ray

- Two structural phase transitions
 - High temperature transition nearly continuous, but XRD shows phase coexistence
 - Lattice parameters show discontinuities at low temperature structural transition at 160 K

Order Parameter for Cubic-Tetragonal Phase Transition: d6-MAPbl₃

- X-ray and neutron diffraction both show phase transition is close to tricritical (intersection of first and second order transitions)
 - Tetragonal distortion from x-ray diffraction
 - Distortion mode analysis from neutron diffraction
 - Order parameter scales with (T_c-T)^{0.25}

Bragg Reflections and PbI₆ Rotations: h6-MAPbI₃

- Splits into (220) and (004)
 Bragg peaks in tetragonal phase
- Phase coexistence
 - Narrower region than d6-MAPbl₃

- Tetragonal (211) superlattice Bragg peak
 - ½ (311) in cubic cell
 - Pnma phase appears via firstorder transition at T = 160 K

Order Parameter for Cubic-Tetragonal Phase Transition: h6-MAPbl₃

- Tetragonal distortion vs T
- Small region of cub0ctetragonal coexistence

Tetragonal distortion vs T

$$- (T_c - T)^{2\beta}$$

$$-\beta = 0.248$$

Tricritical

d6-MAPbl₃ Single Crystal Diffraction on TOPAZ at SNS

- d6-MAPbl₃ single crystal
 - 1-2 mm in size
- Tetragonal (211) Bragg reflection
 - Superlattice ½ (311) in pseudocubic cell
 - Power law fit again consistent with near-tricritical behavior

MAPbl₃ phase transitions: MA disorder grows with temperature

Pnma T = 10 K

Pnma T = 130 K

I4/mcm T = 190 K

Orthorhombic

160 K

Tetragonal

Pm-3m T = 350 K

Cubic

14/mcm T = 300 K

Tetragonal

Hydrogen bonds play a role in structural transitions

- Hydrogen bond strengths are directly correlated with structural phase transition at 160 K
 - Low temperature orthorhombic structure has strongest H-bonds
 - Order-disorder transition of MA cations
- H-bonds decrease in strength with increasing temperature
 - Thermal expansion
 - MA cation disorder

Neutron Spectroscopy of h6-MAPbl₃: dispersion

- CNCS spectrometer at SNS
 - T = 1.7 K
- MA vibrations have little dispersion
 - Molecular vibrations
 - Intermolecular coupling is weak
- Peak assignments (from DFT)
 - 10-25 meV peaks correspond to CH₃ torsions, and librations and translations of MA cations
 - Peak at 38 meV is intramolecular vibration, mostly NH₃ torsion

MAPbl₃: Neutron Vibrational Spectra and DFT Calculations

Comparison of neutron and DFT spectra provides a demanding test of accuracy of DFT calculation

- VISON spectrometer at SNS
 - T = 10 K
- Neutron vibrational spectrum
 - Similar to IR and Raman, but no selection rules
 - MA vibrations dominate due to large incoherent neutron scattering crosssection for H
- Density functional theory
 - Vibrational eigenvectors
 - Use as input to calculate neutron spectrum
 - Provides vibrational mode assignments
 - I. Milas (DuPont) and Y.Q. Cheng (ORNL)
- Measurements of vibrations and phonons are important for understanding
 - Electron-phonon coupling (charge transport)
 - Thermal conductivity (heat capacity)

MAPbl₃ neutron vibrational spectra vs DFT

Partially and fully deuterated samples

- Establish vibrational mode assignments
 - "NH₃ torsion" at 37.7 meV shifts significantly upon deuteration

$$- \upsilon_{H}/\upsilon_{D} = 1.26 \text{ (vs 1.41)}$$

 "CH₃ torsion" at 11.5 meV shifts to 9 meV upon deuteration

$$- \upsilon_{H}/\upsilon_{D} = 1.26 \text{ (vs } 1.41)$$

 Test accuracy of vibrational eigenvectors from DFT calculations

QENS: Structural transitions affect dielectric properties

Onoda-Yamamuro et al, J Phys Chem Solids 53, 935 (1992)

Mean square displacement (MSD) measured using HFBS at NIST Center for Neutron Research

- Calculated from elastic peak intensity vs T
- Measure of mobility of methylammonium (MA) cations

Dielectric constant tracks mobility of the MA cations at structural phase transitions

- T < 160 K Low dielectric constant
 - MA cations are fully ordered, dipoles no longer reorient in response to electric field
 - Dynamics due to rotations around C-N bond
- T > 160 K High dielectric constant
 - Nearly free rotation of MA cations above transition leads to large dielectric constant
 - Cubic-tetragonal transition at 330 K does not affect MA cation dynamics or dielectric properties

High dielectric constant in cubic and tetragonal phases reduces exciton binding energy → increases charge separation efficiency

Dielectric constant and low T phase transitions: other halides

MAPbl₃: QENS and Partial Deuteration

- MSD is characteristic of H atoms of MA cations: rotations <u>around</u> the C-N bond at low T and rotations <u>of</u> the bond at high T
- No significant isotope effect on phase transition or MSD values

Structural transitions affect electronic properties

Sargent group, U. Toronto B.R. Sutherland et al, Adv. Mater. 27, 53 (2015)

- Photoluminescence measured as a function of temperature
- PL is sensitive to electronic structure of Pbl₃ sublattice
 - PbI₆ octahedra undergo additional tilts/distortions at the 160 K tetragonal → orthorhombic phase transition
 - Tilts change Pb-I-Pb bond angles, and this affects electronic structure
 - PL shifts to higher energy in orthorhombic phase

MAPbl₃: high temperature transition affects ionic conductivity

T. Baikie et al, J Mater Chem A (2015)

- Electrical conductivity vs temperature
 - Cubic → tetragonal phase transition occurs at 327 K
 - Conductivity is sensitive to Pb-I-Pb bond angles and lengths
- Activation energy for conduction in cubic phase is 0.38 eV
 - Consistent with ionic conductivity in other halides
 - Detailed understanding is still lacking

Does high temperature phase transition affect electronic properties?

- PL shifts with temperature
 - Associated with change of electronic band structure
 - Band gap should shift due to lattice expansion
 - Separating thermal effect from structural effect is difficult
- Short-range cubic structure could be tetragonal?
 - Single crystal diffraction shows
 R-point Bragg reflections in cubic phase, but broadened
 - Electronic structure would not change significantly across phase transition

Some remaining questions

- Lead-halogen phonons
 - Nature of phase transitions: displacive vs order-disorder
 - How do energies of PbI₆ rotational modes change with temperature?
 Are the modes overdamped?
 - Anharmonicity and ultralow thermal conductivity
 - What is magnitude of electron-phonon coupling?
 - Is tricritical nature of cubic-tetragonal transition important for PV properties?
- Electronic properties
 - Why are these materials so efficient for PV?
 - High dielectric constants? Defect and exciton screening?
 - Is Pb necessary for high efficiency?
 - Reason(s) for high carrier mobilities?
 - Can these materials be doped with electrons or holes?
 - Understand the effects of phase transitions on electronic properties?

Conclusions

- Hybrid perovskites are complex
 - Static and dynamic disorder due to organic cations
 - Structural phase transitions
 - Hydrogen bonds
- Structural complexity impacts properties important for photovoltaic applications
 - Dielectric constants
 - Optical properties
 - Thermal conductivity
 - Heat capacity
 - Thermal stability
- Neutron (and x-ray) scattering studies can provide a detailed microscopic understanding of the structures and dynamics of hybrid perovskites and other advanced materials

Thanks! Questions?

The miracles of science™